Electronic paper display (EPD) is often considered to be more comfortable to read than conventional displays. This is due to the stable image, which has no need to be refreshed constantly and has a wider viewing angle. An ideal e-paper display can be read in direct sunlight without the image appearing to fade. The contrast ratio in available displays as of 2008 might be described as similar to that of newspaper, though newly-developed displays are slightly better. There is ongoing competition among manufacturers to provide full-color ability. The first flexible EPD for consumers will be available in Europe in April 2012.
Applications: electronic pricing labels in retail shops, and digital signage, time tables at bus stations, electronic billboards, mobile phone displays, and e-readers able to display digital versions of books and e-paper magazines. Electronic paper should not be confused with digital paper, which is a pad to create handwritten digital documents with a digital pen.
Technologies
1.Gyricon Electronic paper was first developed in the 1970s by Nick Sheridon at Xerox's Palo Alto Research Center. The first electronic paper, called Gyricon, consisted of polyethylene spheres between 75 and 106 micrometres across. Each sphere is a janus particle composed of negatively charged black plastic on one side and positively charged white plastic on the other (each bead is thus a dipole).[8] The spheres are embedded in a transparent silicone sheet, with each sphere suspended in a bubble of oil so that they can rotate freely. The polarity of the voltage applied to each pair of electrodes then determines whether the white or black side is face-up, thus giving the pixel a white or black appearance.[9] At the FPD 2008 exhibition, Japanese company Soken demonstrated a wall with electronic wall-paper using this technology.
2.Electrophoretic Appearance of pixelsIn the simplest implementation of an electrophoretic display, titanium dioxide (titania) particles approximately one micrometer in diameter are dispersed in a hydrocarbon oil. A dark-colored dye is also added to the oil, along with surfactants and charging agents that cause the particles to take on an electric charge. This mixture is placed between two parallel, conductive plates separated by a gap of 10 to 100 micrometres. When a voltage is applied across the two plates, the particles will migrate electrophoretically to the plate bearing the opposite charge from that on the particles. When the particles are located at the front (viewing) side of the display, it appears white, because light is scattered back to the viewer by the high-index titania particles. When the particles are located at the rear side of the display, it appears dark, because the incident light is absorbed by the colored dye. If the rear electrode is divided into a number of small picture elements (pixels), then an image can be formed by applying the appropriate voltage to each region of the display to create a pattern of reflecting and absorbing regions.
Electrophoretic displays are considered prime examples of the electronic paper category, because of their paper-like appearance and low power consumption.
Examples of commercial electrophoretic displays include the high-resolution active matrix displays used in the Amazon Kindle, Barnes & Noble Nook, Sony Librie, Sony Reader, Kobo eReader and iRex iLiad e-readers. These displays are constructed from an electrophoretic imaging film manufactured by E Ink Corporation.
Scheme of an electrophoretic display
Scheme of an electrophoretic display using color filters
Electrophoretic displays can be manufactured using the Electronics on Plastic by Laser Release (EPLaR) process developed by Philips Research to enable existing AM-LCD manufacturing plants to create flexible plastic displays.
Electrophoretic display
Scheme of an electrophoretic display.
Scheme of an electrophoretic display using color filters.An electrophoretic display forms visible images by rearranging charged pigment particles using an applied electric field
Macro photograph of Kindle 3 screen; microcapsules are evident at full sizeIn the 1990s another type of electronic paper was invented by Joseph Jacobson, who later co-founded the E Ink Corporation which formed a partnership with Philips Components two years later to develop and market the technology. In 2005, Philips sold the electronic paper business as well as its related patents to Prime View International. This used tiny microcapsules filled with electrically charged white particles suspended in a colored oil. In early versions, the underlying circuitry controlled whether the white particles were at the top of the capsule (so it looked white to the viewer) or at the bottom of the capsule (so the viewer saw the color of the oil). This was essentially a reintroduction of the well-known electrophoretic display technology, but the use of microcapsules allowed the display to be used on flexible plastic sheets instead of glass.
One early version of electronic paper consists of a sheet of very small transparent capsules, each about 40 micrometres across. Each capsule contains an oily solution containing black dye (the electronic ink), with numerous white titanium dioxide particles suspended within. The particles are slightly negatively charged, and each one is naturally white.
The microcapsules are held in a layer of liquid polymer, sandwiched between two arrays of electrodes, the upper of which is made transparent. The two arrays are aligned so that the sheet is divided into pixels, which each pixel corresponding to a pair of electrodes situated either side of the sheet. The sheet is laminated with transparent plastic for protection, resulting in an overall thickness of 80 micrometres, or twice that of ordinary paper.
The network of electrodes is connected to display circuitry, which turns the electronic ink 'on' and 'off' at specific pixels by applying a voltage to specific pairs of electrodes. Applying a negative charge to the surface electrode repels the particles to the bottom of local capsules, forcing the black dye to the surface and giving the pixel a black appearance. Reversing the voltage has the opposite effect - the particles are forced to the surface, giving the pixel a white appearance. A more recent incarnation of this concept requires only one layer of electrodes beneath the microcapsules.
没有评论:
发表评论